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ABSTRACT 

Recent advances in the design of high performance aircraft, such as fly-by-wire 

controls, complex autopilot systems, and unstable platforms for greater maneuverability, 

are all possible due to the use of digital control systems. With the aid of modern control 

tools and techniques based on state-space methods, the aerospace engineer has the ability 

to design a dynamic aircraft model, verify its accuracy, and design and implement the 

controller within a matter of a few months. This work examines the digital control 

design process utilizing a Rapid Prototyping System developed at the Naval Postgraduate 

School. The entire design process is presented, from design of the controller to 

implementation and flight test on an Unmanned Air Vehicle (UAV). 
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I.       INTRODUCTION 

The use of digital computers in the real-time control of aircraft has paved the way 

to new aircraft designs that are faster, more maneuverable and safer than ever before. 

With this growing emphasis on digital control design, new tools and techniques have 

been developed to aid in the design and implementation of complex control systems. 

Traditionally, control systems are developed using classical control design methods that 

are costly and time consuming. Newer technologies, like rapid prototyping based on 

modern control methods, integrate the design process and shorten the time required to 

complete a control design from a few years to a few months. 

The purpose of this thesis is twofold: develop the background material for an 

Advanced Control of Aerospace Vehicles course, and design and flight test an altitude 

hold controller for a UAV. 

At the Naval Postgraduate School, students in the Aeronautical and Avionics 

Engineering curriculum receive a full sequence of controls courses with the final course 

being Advanced Control of Aerospace Vehicles, for which this thesis is written. This 

course will introduce the students to the critical aspects of the design, implementation and 

flight testing of the basic controllers for fixed-wing aircraft. The course examines both 

classical (transform) and modern (state-space) control methods for designing complex 

digital control systems. 

The main focus is on the study of sampled-data systems, systems that have both 

discrete and continuous-time components. Devices used for the interface between the 

continuous and discrete components, the analog-to-digital converter and the digital-to- 

analog converter, are covered in detail. This thesis will derive mathematical models for 

each of these operations, and develop tools for analysis and synthesis. 

The class is largely project oriented. Much of the class is concentrated in the 

Avionics/Controls laboratory and the Unmanned Air Vehicle (UAV) laboratory. The 

projects are centered on a Rapid Prototyping System (RPS) developed by the aeronautical 

engineering department for flight testing control algorithms for unmanned air vehicles. 

The system affords a small team the ability to test new concepts in guidance, navigation, 



and digital control. The RPS consists of commercially available rapid prototyping 

software with an open architecture design to allow for a wide range of applications. The 

application software developed by Integrated Systems Incorporated (ISI), called RealSim, 

allows students to participate in design projects from the initial concept stage to the flight 

testing phase of the design process. This software has two main advantages: 

• The ability to automatically generate higher-language code such as C for the 

designed controller. 

• The system utilizes industry standard I/O devices including digital-to-analog, 

analog-to-digital, pulse width modulation, and serial capability, permitting easy 

connections to hardware. 

The test bed aircraft used is a UAV called FROG , shown in Figure 1.1. This UAV is 

equipped with a complete avionics suite necessary for autonomous flight. 

The accomplishment of this endeavor has led to a number of successful projects, 

including voice controlled flight and an airspeed controller, and is paving the way for 

more complex projects such as autonomous landing. This thesis will describe in detail 

one such design project, the development of an altitude hold controller implemented in 

the FROG using the RPS tools. The automation of the design process is completed in 

three developmental phases: 

• Feedback controller design. In this phase a model of the plant is created. The 

controller is then designed through various methods of classical input/output 

control techniques and/or modern state-space control techniques. The process 

typically involves many iterations to satisfy specific design requirements. 

• Hardware-In-the-Loop Testing. The feedback system is tested with some or 

all of the actual hardware which will be used to control the aircraft. This is the 

final validation of the controller prior to an actual flight. 



•    Implementation and Flight Test.   The controller is implemented in the Fight 

Management System used to control the FROG and then flight tested. 

The design process described above is completed entirely with the RealSim series rapid 

prototyping software and real-time control hardware integrated with the system. 

Figure 1.1: VAW FROG 





II.      SAMPLED-DATA SYSTEMS 

The systems and signals studied in the control of aerospace vehicles are referred 

to as sampled-data systems and have both discrete and continuous components, see 

Figure 2.1, where a continuous-time, or analog signal, is to be processed using a 

computer or special-purpose Digital Signal Processing (DSP) chip set. The interface 

between the continuous and discrete systems include the analog-to-digital (A/D) and the 

digital-to-analog (D/A) converters. 

u(k) 
Zero-Order-Hold 

(D/A) 

u(t) 
Plant 
(CTS) 

y(t) Sampler 
(A/D) 

y(k) 

Figure 2.1: Sampled-Data System 

The conversion of the a discrete to an analog signal by the D/A converter, which 

usually uses a Zero-Order-Hold (ZOH), involves scaling the digital values and converting 

them to a piecewise-constant continuous output. Where the conversion of the analog 

signal to a discrete sequence by the A/D converter is accomplished by a sample-and-hold 

circuit, called a Sampler. 

This chapter will describe the operations of the digital-to-analog converter and 

analog-to-digital converter and methods for obtaining discrete models of continuous-time 

systems. Material presented in this chapter is in the form of classroom notes, for further 

discussion refer to [Ref. 1,2,3]. 

A.      DISCRETE MODELS OF SAMPLED-DATA SYSTEMS 

In this section we establish a general method for obtaining the difference 

equations that represent the behavior of the sampled-data system. The resulting 

equivalent discrete system will then be analyzed using the sample-to-sample discrete 



transfer function of a continuous system between a D/A and an A/D, as shown in Figure 

u(k) ZOH u(0, Plant 
P(s) 

0 

y(t). Sampler y(k), 

u(k) Plant 
P., 

y(k). 

2.2. 

Where 

P = 
\x = A-x + B-u 

[y = C-x + D-u 

Pd-- 
\xk+} =Ad-xk+Bd-uk 

\yk=Cd-xk+Dd-uk 

Figure 2.2: Equivalent Sampled-Data System 

1.       Digital-to-Analog Converters (D/A) 

Digital-to-analog converters usually use zero-order hold or (ZOH): given a 

sequence of samples, u(kT) at t = kT, and holding its output constant at this value until 

the next sample is taken at / = kT + T to produce a continuous signal. The piecewise 

constant output of the D/A is the signal u(t) that is applied to the plant. Thus, the value of 

u(t) consists of steps as seen in Figure 2.3. 



2.       Analog-to Digital Converters (A/D) 

The analog-to-digital converter samples the analog signal y(t) at discrete times and passes 

them to the computer. The time interval between samples yk is called the sampling 

interval T. The A/D converter has two functions: quantizing the sampled analog signal 

into a discrete set of levels and coding the quantized representation into an acceptable 

format. 

In nil 

i ■ i 

k) 

T  2r   |    | 

"1 37'    47'     57 

i i                       *      ■ 

Output 

u(t) 

Input Digilal-lo-Analog 
Converter 
(DAC) 

T   IT 

r 
37" 47*    57" 

Output 

Figure 2.3: Digital-to-Analog Conversion 

then 

3.       Discretization of Continuous-Time Systems 

Consider a linear, continuous-time system 

jx = A-x + B-u 

\y = C-x + D-u' 

x(t) = eA("U)) ■ x(t„) + jeA{"T) -B-u(T)-dT. 
i„ 

To discretize let: t0 = kT; t = kT+ T and assuming u is held constant over the sampling 

interval T (ZOH with no delay) 

U(T) = u(kT)    ; [kT < r < kT + T\ 

Then 

kT+T 

x(kT + T) = eA{T) ■ x(kT) +   \eA{kr+r-T) .B-u{r)-dr 
kT 



Let 

Z = (kT + T)-T 

d{ = -dr, 

then 

r = kt=>4=T 

Let x(kT+T)= x4+,,then 

**+i = ßAr ■ Xu + \eH -B-uk-d$ (Eq. 2.1) 
0 

Define 

AT 0 = e 
T 

o 

The discrete equivalent of P 

jxk+]=®-xk+r-uk 

P<=\yk=C.Xk+D.uk <*•"> 

Note the equivalent discrete system is shift-invariant, since O and T are not functions of 

k. Commands to discretize:   Matlab--c2d, Xmath-discretize 

EXAMPLE 2.1:        Discretize the following CTS 

x = -a-x + a-u a 
P(s) = 

y=x s+a 

From equation 2.2 

<$> = e 

r 

-a-T 

r= \e~H ■{a)-d^ = {\-e-aT) 
o 

xk+.=e-aT-xk+(l-e-aT)-uk 

yk=xk 

8 



B.      THE Z-TRANSFORM 

1.       Definition 

Given a sequence {xk},   k- - oo,... <x> , let 

00 

X(z) = ^xk-z~k, r<> < \z\ < Ro, (Eq. 2.3) 
A=-oo 

where we assume we can find values of r0 and for which the series converges. 

As in the case of the Laplace transform, Eq. (2.3) is considered an operator that 

transforms a sequence xk into a function X(z), symbolically represented by 

X(z) = Z{xk} 

The Xk and X(z) are said to form a z-transform pair denoted as 

X(z) <-> Z{xk) 

EXAMPLE 2.2 Consider the sequence given in example problem 2.1 

P(s) = -^- =>       xk = eakT ; k=0,l,2,... 
s + a 

By Eq. (2.3) the z-transform of Xk is 

Z{xk} = X(z) = ±e-"kTz-k =±(e-aT ■ z'1) 
*=o k=0 

Note: a infinite geometric sum is given by 

„,=o        l —a 

Letting a = (e'aT -z_1) 

l-(e-fl'7-z-) 
X(z)=,    ,_-a.T    -K i Yar-z-'\<\   ■   \z\>e' 

2.       Some Properties of the z-Transform 

Listed below are some properties of the z-transform useful to the material 

presented in this section. For reference, a more complete list is found in [Ref. 1]. 



Linearity: given {xkj, {yk} 

Z(xk+yk) = Z(x0+Z(yk) 

Z[a(xk+y!i)]= Z(a x0 + Z(ay0 = aX(z) + a Y(z)      ;      where a = constant 

Time Shifting: 

Z{x(k±n)} = z-nX(z) 

Gives transform pairs 

x(k+l)+>zX(z) 

x(k-l) <-> z1 X(z) 

Demonstrated by 

Z(xk+i) = Z (X0 

00 00 

Z(xk+1)= Xx*+r
z_* =Sx*+i-

z" 
0 0 

= ±xk+rz-^.z 
0 

= z-X(z) 

■A-l+1 

Final Value Theorem: 

if such limits exists. 

Limx(k) = Lim(z-\)X(z) 

EXAMPLE 2.3: Find the z-transform given in example problem 2.1. 

[yk = ** 

z*(z) = e- • X(z) + (1 - e-
a7') • U(z)\      Y(z)     \-e~aT 

Y(z) = X(z) U(z)    z-e-aT 

10 



C.      ANALYSIS OF DISCRETE-TIME SYSTEMS 

1.       The Discrete Transfer Function 

Consider the continuous-time and discrete-time systems shown in Figure 2.4. 

u(t) y(t) 
—► 

u(k) y(k) 

Figure 2.4:   System Transfer Functions 

The transfer function for the continuous-time system is 

Y(s) = {C(sl - A)~x -B + D}- U(S) 

For the discrete-time system compute 

\yk=C-xk+D-uk J 

z(xk+1) = z(®-xk+r-u) 

z-X(z) = 0-X(z) + T-U(z) 

x(z) = (zi-®y]-r-u(z) 

Z(yk) = Z(C-xk+D-uk) 

Y(z) = C-X(z) + D-U(z) 

Y(z) = {C■ (zl - <D)-' • T + D\ ■ U(z) 

Discrete transfer function 

U(z) 
c(zi-®y'r+D (Eq.2.4) 

EXAMPLE 2.4: Find the discrete transfer function from example problem 2.1 

11 



Given: 

P(s) = 
a 

s + a 

Continuous-Time 

a 

Discrete-Time 

Y(s) = [C • (si - AT -B + D]- U(s) => Y(s) = -?— ■ U(s) 
s + a 

0> = e~aT T = \e-ai ■ (a)d£ = (1 -e~aT) 

From Eq. (2.4) 

Y(z) 
= (l)[zI-e-a,r-(\-e-"1) = \-e-aT 

a-T U(z) z-e 

Now consider the sampled-data system in Figure 2.5. 

D/A «fiV P(s) y(% A/D 
yk 

Let 

Figure 2.5: Prototype Sampled-Data System 

fl;* = 0 
u(kT) = ' 

|0;£ * 0 

Then u(k) is the unit impulse.   The response to a unit impulse determines the impulse 

response of the D/A converter: 

u(t) = \(t)-\(t-T) 

Then 

1    e~xT     1 
U(s) = ^e—^(l-e-«) 

s      s      s 

and 

y(t)=u G(s) 
•(l-e-)) 

V   s 

y(kT) = y(t), (k-\)T<t<kT 

12 



Finally, 

G(z) = Z(y(kT)) 

rG(s) 
= ZU" 

V   s 
(j-«-) 

-K      ry\    T-\ (1-O-Z \L '<?(^ 

(l-z-)-Z 

I    V   s   J 

rG(s)\ 

V   s   J 

Where the "L'1" is dropped for convenience. 

EXAMPLE 2.5: Compute the discrete transfer function for 

a 
G(s) = 

s + a 

Then 

The corresponding time function 

G(s)     1       1 

s       s    s + a 

r«-i(,)-«-(o 

(Eq. 2.5) 

y(kT) = l(kT)-e-ak7 -l(kT) 

The z transform 

1   s   J       ^V z-1    z-e-'     (z-l)(z-e-aT) 

From equation 2.5 

G(z) = (l-z-') Kl    z(l-e-°r) 
,(z-l)(z-0 

1-e -aT 

z-e -aT 

13 



The transfer function can also be obtained from the system's response to a unit 

pulse. Suppose the system input, uk for k > 0, and the initial conditions are known, then 

writing out each term of the difference equation gives: 

x, = O • x0 + T • u0 

x2=<&-xl+r-ux =o-(o-x0+r-«0)+r-w1 =o2-x0 + o-r-w0+r-«1 

xk =o* -x0 +a>*-1 -r-w0 +o*-2 -r-u, +...r-w,_, 

Therefore, 

1=0 

A-i (Eq. 2.6) 
^=c-Q*-x0+yc-P*-'-r-t/; 

'=°   A,(*-i) 

Suppose xo = 0 and 

then 

In general, 

u =rk=0 

;=0 

2.       Block Diagrams and State-Space Descriptions 

The discrete transfer function, in the z-domain, represents a linear algebraic 

relationship, accordingly multiple linear systems may be described by a system of linear 

equations. 

14 



Parallel Connections: The system response of a parallel combination of two LTI 

systems is the sum of the single-path transfer function, Figure 2.6. 

»   H,(z) 

Or2* 
H2(2) 1 

Figure 2. 6: Parallel blocks 

7(z) = [#, (z) + #2 (z)] • l/(z) = //(z) • U(z) 

W) 

Cascade Connections: The system response of two LTI systems in series is related by 

the product, Figure 2.7. 

u 
H,(z) H2(z) y 

Figure 2.7: Cascade blocks 

Yx(z)=Hx{z)-U{z)\ 
Y(z)=H2(z).Yl(z)\Y^H^H^-U^ 

Feedback Connections: The transfer function of a single loop, Figure 2.8, is given by: 

■>0 ►!   H,(z) 
A" 

y 

H2(z) 

Figure 2.8: Feedback transfer function 

15 



y = Hx-e 
y = Hx-(u-H2-y)=>Y(z) = 

Hx(z) 
U(z) e = u-H2-y\      '        '   * '  "   - --'    \ + Hx(z)-H2(z) 

These transfer function relationships can be used in combination to describe 

complex multi-path systems. 

In general 

H(z) = 

Example of 3rd order system 

a0+ax •z~'+...am-z-m 

1 + 6, -z~x +b2-z~2+...bn-z- 
£(£) 
b(z) 

H(z) = 
ax-z ' + a2-z~2 + a3-z 

3 

l + b,-z-] +b, -z-'+L-z-' 

State-space realization (control canonical form), Figure 2.9. 

Figure 2.9: State-Space Realization 

By inspection 

xl(k + \) = x2(k) 

x2(k + l) = x3(k) 

x3(k + l) = -bx-x3(k)-b2-x2(k)-b3-xx(k) + u 

y = a1 -x3(k) + a2-x2(k) + a3-xx(k) 

16 



In vector-matrix form 

x(k + i) = o-x(k)+r-u(k) 

x = o = 
0 1 0 0 
0 0 1 r = 0 

*3 ~b2 -&. l 

y(k) = C-x(k) 

C = [a3    a2    a,] 

3.       Input/Output Stability 

Suppose \uk\ < M < oo, for all k > 0, then Pd is BIBO stable if in response to any 

bounded input Uk, the output yk is also bounded: \yk \ < oo, for k >_0. 

In general, for zero initial conditions, [ x(0)=0 ] 

CO 

yk = IXC*-*)-«/ 
A=-oo 

For BIBO stability 

\yk t^Kik-iW 
k=-°° 

if 

<Y\hd{k-i)-M\ 
k=-ao 

^M-|;|Ärf(Ä:-i)|<oo 

X|^(Ä:-O|<oo        or S|ä(*)|<«> 
-°° k=-oo 

Therefore, if the unit pulse response is absolutely summable, then the system is BIBO 

stable. 

EXAMPLE 2.6: Determine the stability requirements for example problem 2.1. 

Consider the unit pulse response 

17 



yk =hd{k) = ak k=0,1,2,3...oo 

and 

00 1 

5V=-T7 
*=o 1 - \a\ 

is BIBO stable if |a| < 1, and unstable otherwise. 

D.      SIGNAL ANALYSIS AND DYNAMIC RESPONSE 

1.       Signal Transforms 

The unit pulse: 

U(z)=fjuk-z-k=z°=\    ; 
k=-x 

The unit step: 

U(z)=±uk.z-> = ±z-*=-±zr = -?- 

"* = 
fl,* = 0 

f1;>t > 0 
0;£<0 

General sinusoid: 

uk =r*-cos(Ä;ö)-l(Ä:) = r/ re/^+e-./*o 
■i(*) 

Z[rk -cos(k0)-l(k)] = z               z —— +  
z-re'e    z-re~'e 

U(z) =     ^-r-cosfl) 
z2-2r(cos0)z + r2 

2.       Frequency Response of DTS 

Consider a sinusoid at frequency co0 applied to a continuous-time system 

u(t) = A ■ cos(ö)0 • t) 

The continuous-time response is 

18 



y{t) = A■ cos(o)0 -t + f) 

Where the amplitude and phase are defined as 

A = \G(jco0)\ 

<f> = ZG(jo)0) 

For discrete-time systems 

uk = cos(co0kT) ■ 1(0 

The discrete transform 

TT. . z(z-r-cosco0T) \   [     z z      ] 
U(z) = ^-±        °    —T = --\ 7T7 + 7TT\        where r = 1; 0 = <T 

z2 -2-r-cos(co0T)z + r2     2   {z-em>'     z-e'*"' J ° 

The discrete response 

Y(z) = G(z)-U(z) 

_ I   \ G(z)z        G(z)z   } 
2   [z-eM'T     z-e~M'T. 

Expanding Y(z) and letting z -» ejwJ 

{)~2[z-e^T      z-e-'^] 

Let G(eM'T) = A(co0T)-em6)»T) 

1    f   eJvz e~ivz   1 
2   [z-e/<B"r     z-e-J°°T\ 

The inverse transform 

Yxs(kT) = A-cs(o)0Tk + y/) 

3.       The Discrete Fourier Transform (DFT) 

Let the time function be periodic, i.e. f(kT)=f(kT+NT), then DFT offflcT) can be 

defined as: 

J2W| = ^f{kT). -j2x{nkT)l{NT) 

19 



where F(n) is a z-transform of the ffiT) over one period evaluated at the discrete 

frequencies of a Fourier series z = eJmT, where a> = 2im/fsrr • Define F„ = F(2m/NT), 

Then the DFT can be rewritten as 

AM 

F„=Yfk 
rj27i{nk)IN 

*=0 

and the inverse transform is 

N ,,=o 

Now evaluating the frequency response using the DFT can be done as follows: 

Let 

u(kT) = A sin 
V N , 

0),= 
2jd_ 

N 

Then 

= A. V U27*« ~ n)lN _ e-J2nk(l+n)/N 1 
V 

= - NA 

{V 
;l = n 

and the DFT of the output is 

y(kT) = B-sin 
2nlk 

■ + y/ 

*=0 V   N ) 

..JL. v/,-/> .J2*k(I-n)/N _-iw ,e-j2nk(l+n)IN 
2jfrT-^ 
0;/ * n 

= \NB   jy,   . 
—eJT ;l = n 

20 



lid Therefore the transfer function for co, is defined by 
'     NT J 

where 7/ = FFT(y0 and U, = FFT(uO, evaluated at n=l. 

JcmiN\_Y, _Be» 
\ )    U,       A 

E.      SAMPLED-DATA SYSTEMS ANALYSIS 

For the purpose of studying the sampled-data systems, each operation involved 

will be analyzed separately. First consider the ideal sampler shown in Figure 2.11. The 

technique presented here is to use impulse modulation to form the mathematical 

representation for the process of taking periodic samples from r(t) to produce a sequence 

r(kT) and to analyze the sampled signal as a continuous signal using the Lapace 

transform. 

r(t) ^ r*(t) 

Figure 2.10 : Ideal Sampler 

The output of the sampler is a train of impulses 

'*(')= Y,r{t)-S(t-kT) 
k=-oo 

Recall the following properties of the unit impulse 

j/(0 • <>(t ~ a)dt = f(a)      sifting property and 
—oo 

/ 

\ö{r)dr = 1(0 
-co 

Therefore 
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00 

Lf*(0}= yO)-e-"dT 
— 00 

*      oo 

= \^Lr{r)ö{t-kT)-e-STdz 
-00*=-"» 

00 °° 

= YJ \r(r)S(t-kT)-e-ST -dx 
*=-«>. 

= Yjr(kT)-e-xkT = R'(s) 

where we used the sifting property of 8. 

Now consider the hold operation, which takes the impulses produced by the 

sampler and extrapolates the data into a piecewise constant output rh, as shown in Figure 

2.12. 

r(t) r*(t) 
ZOH 

Figure 2.11: Sample and Hold 

Using zero-order polynomials, thus, the name zero-order hold (ZOH), which hold 

each sample constant over the sampling period, the piecewise signal rh is defined as 

rh = r(kT)       ; kT<t<(k+l)T 

The response of the ZOH to a impulse at time t=0 is 1 for 0 < / < T.   The impulse 

response of the ZOH is ZOH(t)=l(t)-l(t-T). Therefore, 

ZOH{s) = J[l(/)-1(7-T)\e~sl ■ dt = (1~e * ) 

0 s 

1.       Spectrum of a Sampled Signal and Aliasing 

Since r (t) is a periodic function it has a Fourier series representation: 

A=-oo 
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where 

7/2 
C«=i  j is(t-kT).e-'"^'r>'dt 

■*   —7"/ 21=—"» 

~r 
Therefore, 

jr«y(r-^) = ify(2*,/7'>' 
A=-00 *     «=-00 

Let o, = — , be the sampling frequency and take the Laplace transform of the sampler 

output: 

L{r\t))= J   Yr(t)-S(t-kT) e~sldt 
-oo\n=-«> 

-00 1-*     »=-00 J 

^^■e >"*>'■ e-«dt 
T H=-co _„ 

Let s =ja) 

1   °° 
~ Y,R(<s-Jncos) 

i °° 
R\jo) ) = -YJ

RUa>-jno)s) 
■*-     M=—on 

Notice, that sampling produces an infinite train of sidebands at ncos, n = -oo... oo. 

EXAMPLE 2.7: Let ö>5 = 1, m = 1/8 

Ä*0-l/8) = ... + JRO-ö)1) + Ä[y(ffl1-ö)J] + JRL/(ö2,-ö)JI)] + ... 

= ... + i?01/8) + i?[;(-7/8)] + i?[y(-14/8)] + ... 

If R(jco) has components above the Nyquist frequency cos/2 or nIT, then after sampling 

overlap or aliasing will occur and the original signal can not be reconstructed. This leads 
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to the sampling theorem: the original signal can be recovered from its samples if the 

sampling frequency (cos = 27i/T) is at least twice the highest frequency in the signal. To 

avoid aliasing a low-pass anti-alias filter is usually inserted preceding the sampling 

operation. 

2.       Data Extrapolation 

To recover RQco) pass R* through a low-pass filter L(jco) as shown in Figure 

2.12. 

R0a>)=L(ja))R(jco) 

it      (O 

T 

Figure 2.12: Ideal Lowpass Filter 

Then 

/(/) = —   [T-eialdco 
OTT     J In -nIT 

2njt 
(e >(*"''"> _e-'<*'/7">\ 

l    . m 
-sin — 

MIT      T 

sine — 

Therefore, 

r(t)= jr*(T)-!(t-T)-dT 
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.      7t(t - Z) 
J £ r (r) • S(T - kT) ■ sine H    T) dr 

_ooi=-oo T 

Ä    rirT.   .     7C(t-kT) 
= 2_, r(kT)smc— - 

Note, the ideal extrapolator is noncausal, since l(t) is nonzero for t < 0. Suppose Z(/vt^ is 

replaced by ZOH. 

Recall, 

l-e-Jar 

ZOH(ja>) = 
j® 

Expressing the transfer function in magnitude and phase form 

ZOH (ju)) = T-e-,eoJ,z sine 
V ^ J 

Therefore, 

\ZOH(jco)\ = T sinc- 
coT 

ZZOH(jco) = -^ +180 • ö(ü) - n2n) 

The resulting signal contains unwanted harmonics or impostors. By frequency analysis 

oir(t) the principal harmonic can be identified. 

Consider the sinusoid signal v(t) = ej0>"'+M 

V(jco)=)eU^t+J^).e-Joytdt 

—oo 

00 

This integral is not defined, however notice Z(S(t)) = \e~'m ■ S(t) -dt = \, 

S(t) = — \eia,dco. 
In 
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Now replace t with co to get 

S(co) = — \eia"dt 

Therefore, 

-CO 

= 2m '*8(co-co0) 

Since 8 is a even function, the spectrum of r(t) can be written in terms of impulse 

functions 

To recover the signal Rh , multiply the spectrum of R* by the transfer function of the 

ZOH. 

F.      DISCRETE EQUIVALENTS BY NUMERICAL INTEGRATION 

Concept: Represent a given continuous transfer function H(s) as a differential 

equation and derive a difference equation whose solution is an approximation to that of 

the differential equation. 

1.       Numerical Integration 

When considering discrete approximation to integration, as shown in Figure 2.13, 

three alternatives exist. 

Forward Backward Trapeziod 

U(t) V2 
/ 

i 
k-l   k k-\   k k-\    k 

Figure 2.13: Area Approximation Rules 
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Approximation methods: 

Forward: 

zK+i =xk+T-(uk)} 

zX(z) = X(z) + T-U(z)\ X(z)       T 1 — H(z) = 
X(z)(z-l) = T-U(z)   J U(z)     z-\ 

s is replaced by ->  

Backward: 

zixk =xk.i+T-uk] 

-Iw^.-r   rr,_^   rrs.s       X{z) T X(z) = z"X(z) + T ■ U(z) => H(z) = 

s is replaced by -> 

U(z)     (1-z-1) 

2-1 

Tz 

Trapezoid Rule (Tustin's Method): 

T zixk=xkA+--(uk-uk_l)} 

(l-z-1).X(z) = ^(l-z-').f/(z)^//(z) = ^^ = ^.i±^ = ^.£±l 
2V W    U(z)     2   1-z-'     2   z-1 

5 is replaced by -»  
Jz + 1 

Therefore, given a continuous transfer function H(s) a discrete equivalent can be 

found by the substitution: 

H,(z) = H(S)\s__ :(2/7-)[(2-I)/(Z + l)] 
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2. Zero-Pole Mapping Equivalents 

This technique consists of a set of rules for locating the zeros and poles and 

setting the gain of a z-transform that will describe a discrete, equivalent transfer function 

that approximates the given H(s). 

Rule #1: All poles of H(s) are mapped by z = esT. Replace s with esT for the poles of 

H(s). HH(s) has a pole at s = a, then H(z) has a pole at z = eaT. If H(s) has a complex 

pole at s = -a +jb, then H(z) has a pole at z = re±je. 

Rule #2: All finite zeros are mapped by z = esT. 

Rule #3: All infinite zeros of H(s) are mapped by z = -1. 

a)        Only one zero of H(s) at s - oo is mapped into z = oo. 

Rule #4: The gain of the digital filter is selected to match the gain of H(s) at the band 

center. 

3. Zero-Order Hold Equivalent 

If the approximating hold is the ZOH, then the equivalent to H(s) is 

//(z) = (l-z-')ZpM} 
This is the same relationship that was derived earlier in section C of this chapter. 
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III. INTRODUCTION TO RAPID PROTOTYPING 

The primary tool for the research conducted in the Avionics lab is the 

hardware/software interface provided by the MATRIXX product family developed by 

Integrated Systems Inc. (ISI). The MATRIXX product family is shown in Figure 3.1. 

This software provides a complete workbench for control systems design and 

implementation. The RealSim controller automates the development of the real-time 

systems by combining graphical modeling software with real-time control hardware. The 

key feature of this product is the AutoCode tool which will automatically program 

higher-language code such as C or ADA for the designed controller. The software 

consists of an easy to use graphical user interface (GUI) that can be run on either SUN 

workstations or a PC. The interface interacts with a high-speed digital signal processing 

(DSP) board developed by Texas Instruments. The system is called AC-100 Model C30. 

MATRIXX Product Family Functionality 

Xmath ■* 

Analysis/Design w 

i ' 

L SystemBuild Simulation 1 
* r 

AutoCode ^ 
Code Generation w 

^ ' 
Hardware 

In-the-Loop 
Testing 1 

RealSim Series • 

Figure 3.1: MATRIX, Product Family 

29 



A.      RAPID PROTOTYPING SYSTEM ARCHITECTURE 

The rapid prototyping system architecture consists of a UNIX workstation and a 

windows based PC host computer which is equipped with two ISA bus adapter boards 

(Figure 3.2). The workstation and PC are connected through Ethernet, using the standard 

TCP/IP protocol suite. The two hardware boards in the PC consist of a board which acts 

as the motherboard for the C30 DSP, and a "DSPFLEX" carrier board which holds four 

input/output, or "IP", modules. The I/O boards connect the model to the real hardware 

via the Hardware Connection Editor (HCE), which will be discussed in later sections. The 

complete system is referred to as the AC-100 Model C30 real-time controller. 

The avionics lab currently has two PC's configured as described above: a Pentium 

tower PC called America and a luggable PC called AC 100. The luggable PC is normally 

Workstation 
RealSim User Interface and Data Collection 

1 r 

Host Computer 
DSP C30 Processor 

Generate AutoCode C 
I/O Management 

IP 1 

Hardware 

IP 2 

IP 3 

IP 4 

Figure 3. 2 : RealSim Architecture 
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connected to a stand alone Sparc II workstation, used for field fight testing with the 

school's Unmanned Air Vehicle (UAV) called FROG. 

There are a number of different types of I/O cards available depending on the 

application. Currently both PC's have 4 IP modules consisting of a serial communication 

(IPSerial) module, digital-to-analog (IP_DAC) module, analog-to-digital (IP_HiADC) 

module, and a pulse width modulation (IP68332) module. A description of each IP 

module and procedures for connecting hardware to the model is covered in detail in the 

Hardware-In-The-Loop Testing section of this thesis. 

B.      XMATH/SYSTEMBUILD 

Xmath/SystemBuild is a software program similar to the Matlab/Simulink 

software programs. Xmath is the parent process and will launch the SystemBuild editor 

when the build command is given or when a file is loaded that contains SystemBuild 

data. It was designed to include an extensive set of design and analysis functions for both 

the classical input/output control techniques and the modern state-space control 

techniques. The SystemBuild program uses a hierarchical method of organization, based 

on the SuperBlock concept. SuperBlocks provide a way of organizing a group of blocks 

that define a function into a compact form for display. Through the use of this hierarchy, 

variable names can be passed up and down the hierarchical structure allowing the 

engineer to easily track and understand what variables are and where they interact with 

the model. This section will cover the basic functions of Xmath/SystemBuild, for 

detailed information refer to [Ref. 4]. 

1.       Xmath Basics 

Xmath can be run from either the SUN or SGI workstations located in the 

avionics and aeronautics labs. Prior to using the MATRIXX software, the user must 

configure his UNIX account to source the 'aclOOsetup' file which defines the editor used 

by the system. This command should be set up as a marcro in the user's .cshrc file so it 
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will automatically run each time the user logs on to the workstation. Adding the 

following command line to the .cshrc file: 'source$ISI/AC100/bin/acl00setup.sh', will 

accomplish this. 

Before invoking Xmath, a separate directory for each project should be created to 

avoid using project files from one project with the standard files of another project. 

Therefore, start by first creating a project directory and then move to that new directory 

using the following UNIX commands: mkdir projectname, cd project_name. To start 

Xmath type « xmath » in the console window. This will bring up the Xmath 

command window as shown in Figure 3.3. 

This is the 
X Windows 
default menu. 

This is the 
menu bar. 

Results appear 
in the Log Area. 

V 

Type input here. 

Errors, warnings, 
and messages 
appear in the 

Xmath Commands: matt m 
File   Edit   Vie»   gptirns   ■utdsn »tip 

Menu Bar Scroll Bars   f 

Log Area 

Command Area 

Message Area 

Grip 
7\ 

0 

Figure 3.3: Xmath Command Window 
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2.       SystemBuild Modeling 

This section is a tutorial that covers the basics of the SystemBuild editor and 

simulator. In the following example, the user will build a block diagram and simulate its 

operation. The model for this illustration is a simple SpeedController shown below in 

Figure 3.4. 

T*© 

Figure 3.4: Speed_Controller 

Step 1: Defining the SuperBlock 

To invoke SystemBuild, at the Xmath command line type « build » and press 

return. The SystemBuild menu bar will appear across the top of the display. Select 

Build from the menu bar with the left mouse button. Then select Edit SuperBlock from 

the Build menu. The Edit SuperBlock dialog box will appear and initially the menu in 

the box is empty. Click the left mouse button on Edit New SuperBlock, and the 

SuperBlock Attributes dialog box appears. Using the SuperBlock Name field, name the 

SuperBlock. Under Type, select Continuous and click DONE. 

Step 2: Placing the Blocks 

A new SystemBuild editor window should be displayed, ready for building the 

block diagram. To select from the SystemBuild block library, click on Define Block 

from the Edit menu or, using a shortcut, double-click in the empty window to bring up 

the SystemBuild block menu.  The SystemBuild blocks are grouped together in thirteen 
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palettes. To select a palette, click on one of the three-letter combinations at the top of the 

menu. 

To begin building the Speed_Controller, first select the Gain Block from the 

algebraic block palette (ALG). Click and hold the left mouse button on this block, drag it 

into the screen, and release the mouse button when the Gain block dialog box appears, 

name the block, if desired, and click DONE. Next, select the Summer block from the 

AGL palette and the Inegrator block from the DYN palette using the same procedures. 

Step 3: Connecting the Blocks 

The next step is to connect the blocks. Note the middle mouse button will be used 

to make connections. Start by connecting the Summer block with the Integrator block. 

Click in the Summer block, with the middle mouse button, then click on the Integrator 

block. A line should connect the two blocks. Using the same procedure, connect the 

Integrator to the Gain block. Now, connect the Gain block to the Summer block. Since 

there is more than one input to the Summer, the Connection Editor will appear as shown 

in Figure 3.5. Use the connection editor to specify the connections; the inputs to a block 

flail     ■CONNECTION EDITOR!     ■Bffl 

FrcM,To : 

c.3 

f0 

TO.4 

Cancel B3 Del Done 

Figure 3.5: Connection Editor 
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are in numerical order from top to bottom. The output from the Gain block should go to 

the second input of the Summer. Then with the left mouse button' connect to Gain block 

with the number 2 Summer input, highlight Add and click Done. 

Note that the blocks can be resized by clicking on the block id number and 

moving the mouse, or flipped by double-clicking on the block's body. 

Step 4: Connecting External Inputs and Outputs 

Input connections: click the middle mouse button in the open space, then in the 

Summer block. The connection editor dialog box appears. With the left mouse button, 

click the number 1 port of the Summer block then click Done. To label the external 

input, click and hold the left mouse button in the SuperBlock ID bar, just above the 

SystemBuild window. Select SuperBlock Attributes. In the dialog box, select the Labels 

tab and under Input Naming select Enter Local Label Names. Now select the Input 

tab and beside Input Label type the desired name. Click Done. 

Output connections: With the middle mouse button click in the integrator block, 

then click in an open space. Connect the two boxes, then click Done. 

Simulating the Model 

The SpeedControl model can now be simulated. There are a number of different 

methods to simulate model, two of which are described here; 

Method 1: First define a time-vector in Xmath by specifing a name, range, and 

an increment. In the Xmath command window type: « t=[0 : .1 : 20]' »;. Next, 

specify an input vector of magnitude one: « u=ones(t) »;. Enter the simulation 

command. Type: «y=sim("Name of SuperBlock", t, u) »;. Note in this example the 

name of the SuperBlock is Speed Contt-oiler. This command invokes the simulator, 

specifies that the Speed_Controller model SuperBlock is to be processed, and sets the 

output equal to y. After the simulation is complete, plot the output by typing: <<plot(y) 

». Note, more details on using the sim command are available by typing « help sim » 

in the Xmath command window. 
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Method 2: From the menu bar under analysis select Simulation. This will bring 

up the simulation parameter dialog box. Define a time vector and input vector as above 

and run. 

Analyzing the Model 

The Xmath/SystemBuild software contains an extensive set of functions for 

system analysis. Specifics for analyzing the model can be found in the Xmath and 

SystemBuild Core Manuals located in the avionics lab or by using the help command. 

To linearize the model, the Xmath command is « sys=lin(" SuperBlock 

name", {keywords}) », where sys is the name of the Xmath system object in state-space 

form. Other useful commands include: poles (sys), eig(a),bode (sys). 

Saving the Model 

To save the model select File from the menu bar, highlight the SuperBlock name 

and click on Save. 

C.      REALSIM SERIES RAPID PROTOTYPING 

This section will continue with the design of the speed controller presented in the 

last section. The tutorial will demonstrate the basic procedures for using the GUI and 

testing on a real-time controller. Later sections will describe how the hardware is 

connected to the model and the procedures for hardware-in-the-loop testing. 

1.      RealSim Graphical User Interface (GUI) 

Each RealSim project is placed in a unique RealSim project directory. A number 

of standard files are associated with each RealSim project. Therefore it is recommended 

to create a separate project directory for each project. The project name and the directory 

name should be the same. 
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To invoke the RealSim GUI type « realsim » in the UNIX command window. 

When the RealSim GUI is invoked in a new directory a dialog box will appear along with 

the GUI. Pressing return or clicking yes in the dialog box will enable the makeproject 

command which creates the first of the required standard files called animation 

configuration file (animation.cfg). Once all the default settings have been accepted, the 

project name in the bottom left-hand corner of the GUI should be listed. 

Next the user must create a target configuration file (target_config.cfg) file. This 

file contains information such as the settings that the AutoCode needs to generate the 

appropriate C code, which controller the model is to run, how many processors are in the 

controller. This file will be used later to compile, link, download and run the design. To 

create this file, click on show utilities in the GUI and select Retarget. The target is the 

node name of the controller. In the UNIX command window the user will be asked for 

the 'controller host name[ ]:' which in the avionics lab is 'america.' All of the remaining 

default settings should be accepted. After retargeting the system to 'americcC the GUI 

should indicate this in the middle of the bottom line in the GUI, see Figure 3.6. 

These files are only created once for each project, as long as there are no changes 

to the system configuration. Once these standard files have been set up for a specific 

project, and the user is in the project directory for that project, typing « realsim » in 

the UNIX command window will start the GUI targeted accordingly. 

Through the use of the GUI the designer can now follow the flow diagram that 

steps the user through the design process. As the user performs each step of the process, 

the GUI paths are filled in, indicating the current stage in the design process. If certain 

RealSim files are older than their logical predecessors, the Needs Up dating indicator will 

be displayed. 

2.       Building the Model 

The first step in the process is building the model using Xmath/SystemBuild, as 

described in the previous section. To continue with the speed controller model, click on 

the Xmath/SystemBuild block in the GUI.   This will bring up the Xmath command 
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window. From this window, select file and load from the menu bar. Highlight the file 

name and click OK. Select the SuperBlock from the build menu to display the model of 

the Speed_Controller. 
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Figure 3.6: RealSim Graphical User Interface 

The SuperBlock design, for this example, is presently a continuous type and needs 

to be transformed to a discrete controller (z-domain). Selecting Transform SuperBlock 

under Build from the menu bar will display the transform dialog box. Highlight the 

SuperBlock name and under type select Discrete, then click Transform. When 

transforming from continuous-time to discrete-time a time delay block must be added to 

the block diagram, as shown in Figure 3.7. From the DYN palette select the time delay 

block. 
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Q>-r© 

Iime_^slay Controller 

TCD 

Figure 3.7 : Discrete SuperBlock for Speed Controller 

3.       AutoCode 

Once the SuperBlock is complete, the user must generate real-time code. In 

SystemBuild, select Generate Real-Time Code from the Build pull-down menu. When 

the dialog box appears, highlight the SuperBlock for which you want to generate code. 

Beside the generated code language, select RTF_only, and check that the filename is the 

same as the project name, then click DONE. This produces a file with the model name 

followed by a .rtf extension. This file containing the real-time code is a top level 

input/output code that is used by the AutoCode program to produce a higher-level 

language used to conduct hardware-in-the-loop testing. 

After the user has generated a real-time file from the SystemBuild model, 

invoke the AutoCode by clicking the AutoCode button in the RealSim GUI. The 

AutoCode high-level language code generator reads the real-time (or .rtf) file and 

produces a high-level source code file with the extension of .c. This file will be used to 

compile, link, and run the design. The GUI should now indicate the completion of the 

AutoCode process. 

39 



4. Interactive Animation 

The next step is to build the Interactive Animation (IA) picture display for 

monitoring and controlling the model while it is being executed in the workstation 

simulation environment or during hardware-in-the-loop testing. Invoke the editor by 

clicking on the Interactive Animation Builder button in the GUI. The animation diagram 

is made by selecting icons from a given library of gauges, dials, switches, and other 

various input and output devices. The Interactive Animation section of the AC 100 User's 

Guide [Ref. 4] has details on all of the available icons. Selecting DEFINE from the IA 

control panel will display the library of icons. For the SpeedController example select 

the dial for the input and a digital readout for the output as shown in Figure 3.8. The 

RTF NAMES button in the control panel loads the I/O names from the model .rtf file and 

must be loaded prior to making any connections. Using the IA Connection editor, 

similar to the SystemBuild editor, the appropriate inputs and outputs are connected to the 

appropriate devices. Once the picture is complete select SAVE PICT from the control 

panel and a file with a .pic extension is created in the working directory. 

Speed_Controller 

Ve locity_lnpufc Velocity_Ouput 

Figure 3.8: IA SpeedController 
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5.       Hardware Connection Editor (HCE) 

The Hardware Connection Editor is used to make connections from the external 

I/O in the SystemBuild model to either external hardware I/O devices for hardware-in- 

the-loop testing or to the IA module for simulation. Before invoking the HCE, the user 

should have a copy of the file 'c_c30.hce' in the project directory. This file informs the 

HCE what type of external I/O devices the target computer, America, is equipped with. 

This process will be covered in greater detail, along with the current set-up in the avionics 

lab, in the Hardware-In-The-Loop Testing section of this thesis. 

Two connection editors will appear when starting the HCE. The first screen is for 

the SuperBlock external inputs and the second for external outputs (see Figure 3.9). For 

this example, the input device will be 'MONITORJNPUT' type. No changes should be 

required to the editors and the only action by the user should be to click DONE to both 

pages. 

Elevator 
display 

Elevator 
buttons 

User 
input 
fields 

IMCUOH Bator tHCEiH 

uae  left mouse button,   tab.   shift-tab»   or return  to »elect   items. 
Hlnte     Use middle mouse button on  toggle  items  for pull—doun menu'e. 

chan  labeltl:10)   tupe 
BELOKBBBBI 
nod Che initial—value f inal-value 

1 auto-speed 
2 Throttle 
3 CruiseOn 
4 SetSpeed 
5 Dec-Speed 
6 Xne_Speed 
7 SpeedError 
6 DeelredSp 
9 Nolsuspeed 
10 engine-RPM 
11 Dear-Ratio 
12 Tims 

NO-DEVICE 
NO-DEVICE 
NO-DEVICE 
NO-DEVICE 
NO-DEVICE 
NO-DEVICE 
NO-DEVICE 
NO-DEVICE 
NO-DEVICE 
NO-OEVICE 
NO-DEVICE 
NO-OEVICE 

<r 

m 

O 
Device-Type 

NO-OEVICE 

Mitial-Ualue  
Ifinlnuej-Ualue......... 
Offset  
BbOutputTsUssrHoake... 

Itodule 
o 

connscted 

Chaanel-Mwafeer 
0 

Final-Value  
ntucitem-Ualue  
Scale-Factor........ 

CANCEL groupie« elOMino-ettrlbutee 
by-SB.ehannel    initial-and-flnal_valuoa 

Selection—Mode 
single 

Modifier 
fields 

Command 
"  buttons   ' 

Figure 3.9: HCE 

41 



6. Compile and Link 

Once the AutoCode is complete the C source files need to be compiled and linked 

to the C30. Selecting the Compile and Link button in the RealSim GUI will cause the 

UNIX systems to connect via ftp with the AC 100 target computer (America). For this to 

happen the host computer, America, must be in the ftp mode. Typing 'aclOOsvr' at the 

DOS prompt on America will enable the computer for ftp transfer. The compiler 

generates object code from the .c file and the link creates a C30 DSP executable from the 

object code. 

7. Download and Run 

When all the above steps are completed, the model is ready to be tested. The 

testing for this illustration will be a simulation only, since no hardware is connected. 

Selecting Download and Run on the GUI will connect the RealSim software to the target 

AC 100 computer through ftp. Once the connection is made, it will automatically load the 

C30 executable into the C30 memory and prepare it to run. The IA module will appear 

on the workstation window along with a control panel called IA Client, see Figure 3.10. 

The START CONTROLLER button starts the execution of the model using the 

initial values loaded from the project name, ioc file for the external inputs, and outputs 

defined by the SystemBuild model. The STOP CONTROLLER button stops the 

executing application and holds the external inputs and outputs at their final values. The 

RESTART CONTOLLER button restarts the model, again using the initial values that 

were loaded from the project name.ioc file. 

The HARDWARE RESET button causes the RealSim controller to perform a 

hardware reset and causes the IA Client to exit. This is the best way to exit after a run, as 

it will clear the C30 memory and return the AC 100 computer to a ready status. The third 

button, EXIT GRAPHICS, exits the IA Client without rebooting the controller. This is a 

software reboot only, which stops the model and terminates the ftp connection. This 

button is not recommended for use, as it will not stop the model from running on C30. 
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8.       Data Acquisition Editor 

The RealSim data acquisition editor defines one or more data acquisition sets for 

each project and provides real-time data acquisition. This allows the user to record and 

analyze any of the inputs or outputs associated with the project. To invoke the data 

acquisition editor select 'Data Acq. Editor' from the show utilities button in the GUI. 

The first data acquisition screen to appear contains all the inputs to the system. The user 

selects the desire inputs for recording by highlighting the variable and selecting 'ON' 

next to the DA_Setting modifier field at the bottom left of the screen. The 

'DA_Decimation_Factor' should read T, this ensures the value will be recorded every 

time step. To select the outputs for recording, toggle the 'Display' selector at the bottom 

of the screen from the 'SB_INPUTS' to 'SB_OUTPUTS'. 

The START DATA ACQUISITION button starts/stops the data acquisition 

program which will record any or all of the inputs and outputs to the C30. Starting the 

data acquisition creates a file in the project directory with the project name and '_l.raw' 

extension. Each time the acquisition process is started a new file is created and the 

number will increment up corresponding to the number of data files created. Therefore it 

is good practice to note which data files correspond to which runs when testing. 

To retrieve the data after the exiting the controller, the user selects 'Convert DA 

Data' from the show utilities button in the GUI. The workstation command window will 

show the last data file recorded with a '.dat' file extension. The user can accept the file 

listed in the window by pressing return or select a previous file by changing the number 

43 



of the file. This process creates a file with the same name as the corresponding raw file 

that can now be loaded directly into Xmath for analysis. The variable names will be the 

same as those used as the input or output names in the SystemBuild model. These 

variables will be vectors with lengths depending on the amount of time that data was 

recorded. A reference file is also created when converting the data that contains specific 

information on that data file, such as the amount of time recorded or the number of 

elements in the file. This will help identify data files if numerous runs are made during 

testing. 
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IV.    HARDWARE-IN-THE-LOOP (HITL) 

This section outlines the process of connecting hardware to a digital controller. 

By using the standard input/output devices integrated with the RealSim software, the 

SystemBuild diagram is connected to the desired hardware. A critical part of connecting 

hardware to the controller is the calibration of the sensors. The controller uses an 

algebraic conversion of the measured sensor output signal from the hardware. This 

algebraic conversion requires calibration by determining the correct conversion constants. 

To demonstrate this step of the design process in the avionics lab, a device called 

the Airborne Remotely Operated Device, AROD, will be used. The lab currently has two 

AROD devices which the students will use for calibration and HITL testing. A complete 

description of the AROD is given in [Ref. 5]. 

A.      HARDWARE DESCRIPTION FOR AROD 

The control surfaces of the AROD are actuated by Futaba FP S34 servo motors. 

To control these actuators, a Pulse Width Modulation (PWM) input signal is used. The 

width of the pulse determines how far the servo will turn. The internal control circuit of 

the Futaba motor includes a small potentiometer in a feedback loop to sense the servo 

position. The output signal from this sensor is noisy due to the varying current draw 

during motor operation. Therefore, the actuators installed on the AROD in the lab have 

been modified to reduce sensor noise. An additional wire has been added so that the 

positive voltage on the potentiometer could be measured at the same time as the center 

voltage [Ref. 5]. Taking the difference between the measured high voltage VH and the 

centered voltage Vc , give a delta voltage VD and results in a significant reduction in 

sensor noise. This set up is shown in Figure 4.1. 
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Figure 4.1: Futaba Actuator 

B.      CONVERSION SUPERBLOCKS 

For this design, the controller input commands are given in degrees. Since the 

input signal to the actuators operates on PWM, a conversion from degrees to PWM must 

first be implemented. Similarly, the output signal from the sensors must be converted 

from volts to degrees. Figure 4.2 shows the SuperBlocks that will be developed to 

implement this design. 

Degcmd 
Deg_2_PWM Actuator Volts_2_Deg 

Degsensed 

Figure 4.2: Conversion SuperBlocks 

1.       Converting Degrees to PWM 

Previous testing of the actuators has determined the total throw to be 0 to 200 

degrees, with a pulse width of 0.6 milli-seconds corresponding to the minimum 

deflection, 2.4 milli-seconds corresponding to the "maximum deflection, and a pulse- 

width of 1.5 milli-seconds corresponds to the centered position, [Ref. 5]. 
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The refresh frequency for the AROD HITL test was chosen to equal the controller 

frequency of 25 Hertz, giving a period T of 40 milli-seconds. Figure 4.3 depicts the 

relevant quantities for a PWM signal. 

+5V. 

h*pH 

Figure 4.3: PWM 

Duty cycle is calculated as: 

Duty Cycle = -£- 

A minimum pulse width of 0.6 milli-seconds, corresponding to -100 degrees, results in a 

duty cycle of: 

Min. Duty Cycle (-100 deg.) = — = 0.015 

The maximum pulse width of 2.4 milli-seconds, corresponding to +100 degrees, results in 

a duty cycle of: 

2.4 
Max. Duty Cycle (+100 deg.) = — = 0.06 

Assuming a linear relationship from minimum to maximum values, the following 

function is used to determine the required duty cycle for a given input in degrees. 

Duty Cycle = 0.0002 * (Desired deflection in degrees) + 0.03 75 (Eq. 4.1) 

The algebraic block iDeg_2_PWM' shown in Figure 4.4 implements this equation. 
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Figure 4.4: Deg_2_PWM SuperBlock 

2.      Converting Volts to Degrees 

The output signal from sensors on the AROD, as described above, is the 

difference between the measured high voltage VH and the centered voltage Vc. This 

voltage signal must be converted to the correct vane position in degrees for feedback to 

the RealSim controller and user display. Again it is assumed that there is a linear 

relationship from minimum to maximum deflection as shown in Figure 4.5. 

VmlOO VpiOO 

Volts 

Figure 4.5: Volts to Degrees Conversion 

Therefore the measured output voltage from the sensor can be converted into correct vane 

position in degrees by: 
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The algebraic block ' Volts 2 Deg' shown in Figure 4.6 implements this equation. 

Volts_2_Deg 

Figure 4.6: Volts_2_Deg SuperBlock 

C.      SENSOR CALIBRATION 

Before the sensors can be used reliably by the controller, they must be calibrated. 

Due to small changes in the operating voltages, calibration is required each time the 

controller is started. The calibration process illustrated here for the AROD involves 

measuring the sensed voltages for vane positions of maximum deflection (-100 deg), 

minimum deflection (+100 deg), and the centered position (0 deg.). These measured 

voltage values are then used in Equation 4.2 to obtain the correct vane position. 

Referring to the Calibration IA screen shown in Figure 4.7, the calibration procedures 

are: 

• Command zero degrees of deflection using the 'Degcmd' dial.   Input the 

displayed voltage into the window labeled 'V0\ 

• Repeat step 1 for max. (+100 deg.) deflection and min. (-100) deflection. 

• Confirm that the degrees sensed are the same as the commanded degrees. 
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Figure 4.7: Calibration IA Screen 

D.      INPUT/OUTPUT CONNECTIONS 

The I/O configuration for AC100 and America are given in Table I. The module 

numbers given in Table II are entered by the user to the hardware connection editor to 

define the type of I/O device required. 

Table I: I/O Configuration 

Module America AC100 

IP_Serial 3 1&3 

IP_HiADC 1 - 

IP_DAC 2 2 

IP_68322 4 4 
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As an example, the HITL design project requires an IP_68322 I/O module for the 

PWM connection from the C30 to the AROD. The voltage signal from the AROD to the 

C30 uses the IPHiADC module. Appendix A includes the HCE input and output 

screens for this project. 

A brief description is given below for the I/O modules used in the avionics lab. 

References are also provided which contain more specific details on each module and 

procedures for making the required connections. 

1. Serial Connections/ IP_Serial Module 

The IPSerial module provides two channels of high performance multi-mode 

serial communication, [Ref. 6] section 5 page 69. Both RS-232-C and RS-422 are fully 

supported. The module can be programmed to baud rates of 2 Mbit/sec and 

asynchronous or synchronous protocols. 

2. Analog-to-Digital Connections/IPHiADC 

The HiADC provides 16 input analog channels with 12-bit resolution and 

synchronous sampling of all inputs, [Ref. 6 ] section 5 page 61. The module can convert 

one analog channel in 1.2 jusec or approximately 800 K samples/second. Each channel 

has a fixed voltage range of + 5 V. No anti-aliasing filtering is provided for by the 

module so inputs should be band-limited to V2 the sampling frequency of the system. 

3. Digital-to-Analog Connections/IPDAC 

The DAC module provides six channels of 12-bit digital-to-analog conversion. 

Each channel can be configured to either + 5V or 0-10V output ranges, [Ref. 6] section 5 

page 34. 
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4.       Pulse Width Modulation Connections/IP_68332 

The IP68332 module is a time processing unit (TPU) that can perform one or 

more hardware I/O functions, [Ref. 6] section 5 page 52. It can be programmed to 

generate various digital I/O signals, the current set-up in the avionics lab will use Pulse 

Width Modulation (PWM) signals. In the PWM mode, the user specifies the duty cycle 

as the output from the SystemBuild diagram. 
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V.      DIGITAL CONTROL DESIGN 

The RealSim rapid prototyping series allows for control system to be tested in 

real-time with hardware-in-the-loop while recording any or all the state variables to 

verify performance. This section will step through the design process using a simple 

controller to control the control surfaces of the FROG. 

A.      MODELING ACTUATORS AND SENSORS 

Before the controller can be designed, a mathematical model of the plant which is 

to be controlled must first be created. The techniques involved to develop the model 

depend on the characteristics of the plant. This section details the technique used to 

model the actuators used on the FROG. Since both the FROG and AROD's control 

surfaces are actuated by Futaba FP S34 servo motors, the AROD is used in the lab. 

To develop an accurate representation of the Futaba actuators, the system is 

modeled as a second-order transfer function. 

H(s) ~ a" 
s + 2 ■ C, ■ con • s + <on 

The system response is obtained by applying a step function to the actuators and 

recording the response using the data acquisition editor feature of the RealSim software. 

To calculate the transfer function, the rise time tr and maximum overshot Mp values are 

measured from the system response. From these values the natural frequency (on and the 

damping ratio C, are calculated using the following formulae: 

ln(MD) 
C=   , ;      2 (Eq.5.1) 
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-tan '^c 
s 

<°n = 
Vw1 (Eq. 5.2) 

It is assumed the actuators have a rate-limiter therefore a small step response of 

10 degrees is used so the effect of the rate-limiter on the rise time would be minimized. 

Then a larger step of 100 degrees is given to estimate the rate limits of the actuator. The 

results are plotted and shown in Figure 5.1 and 5.2. Note, to obtain a clearer picture of the 

actuators step response for the 10 degree step, the signal was fed through a lowpass filter 

with a cut-off frequency of 10 hertz. 

From the 10 degree step response plot, values for the maximum overshoot Mp 

and rise time tr were measured as: 

Mp = .2 tr=.06, 

From equations 5.1 and 5.2, the co„ and C, were calculated as: 

con= 20.55       £= .455, 

a. 
03 c 

Time (sec) 

Figure 5.1: Step Response of Futaba Actuator (10 deg.) 
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Figure 5.2: Step Response of Futaba Actuator (100 deg.) 

The slope of the 100 degree step response is measured and used to calculate the 

rate-limiter, which was found to be approximately +325 deg./sec. 

The 2n order transfer function can be given in general form by: 

-2 

H(s) = 
axs   + a2s 

where 

a, =0 

a2 = o)„ 

bx=2-£-cön 

b2 = a,, 

This transfer function was then implemented in SystemBuild, see Figure 5.3. Computer 

simulations were run on the model and the step response recorded and plotted along side 

the actuator's step response for analysis. By changing the damping ratio and natural 
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frequency of the transfer function, the step response of the model was made to match the 

response of the actuator. The final values for the damping ratio and the natural frequency 

were: 

^=.55 
con = 25 

The step responses of the final second-order model and the actuator are shown in 

Figure 5.4. 

o- *    —    -rd> 

Figure 5.3: Second Order Actuator Model 

Figure 5.4: Step Response of Actuator and Second-Order Model 
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B.  FEEDBACK CONTROLLER DESIGN 

The next step is to design a feedback controller that satisfies specific 

requirements. The requirements are normally specified in terms of response time, 

overshoot, stability and robustness. The controller design process is outlined below: 

• 

• 

Create a nonlinear model. A block diagram is formed that includes the plant 

model and nonlinear controller. 

Linearize the model and adjust controller gains. The linear model is 

linearized and then analyzed using frequency response and/or root-locus 

methods. 

Analyze closed-loop system. Computer simulations are run with the feedback 

system, the controller gains are adjusted to create the desired control. 

Applying classical control techniques, the controller model is generally first 

designed in continuous-time. After a satisfactory response is achieved the system is 

transform to discrete-time and tested again for satisfactory response. 

For this example the SpeedController developed in Chapter III is implemented 

with the actuator model. To analysis the system the loop between the controller and plant 

is broken as shown in Figure 5.5. The system is linearized using the Xmath command 

sys=lin(" Super Block name"). The linearized model can be used to analyze the system 

using root-locus methods and Bode frequency response methods. The root-locus and 

Bode plots, shown in Figure 5.6, are generated using the Xmath commands: rlocus(sys) 

and bode(sys). After a satisfactory response is obtained, the system is transformed to 

discrete-time and tested again. 
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Figure 5.6: Bode Plot 
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C.      HARDWARE-IN-THE-LOOP TESTING 

Hardware-in-the-loop testing is where the feedback system is tested with some or 

all of the actual hardware. In this case, the design will include the actuator, the actuator 

model and the Speed_Controller, as shown in Figure 5.7. This design allows the 

controller to be simulated with the actuator model or conduct HITL testing. If the 

actuator model is accurate and the controller design is correct, there should be no 

apparent difference in the performance of the controller. If the actuators are not modeled 

well, the test of the controller may indicate that the controller works as designed while 

the HITL test may show that the feedback system is unstable. 
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Figure 5.7: HITL Test SystemBuild Block Diagram 

The simulation includes two switches for controlling the desired simulation state. 

The three simulation states are: 

• Sensor calibration 

• Actuator model 

• HITL 

The calibration switch controls which input command will be used by the 

actuators. With the calibration switch On, the command input Degcmd is used.  When 
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the switch is Off, the commanded input is from the error signal of the Vel_cmd in the 

loop. The HITL switch will control which test is desired: the computer actuator model or 

the actual hardware. Table II summarizes these switch functions. The interactive 

animation page used to monitor and control the model is shown in Figure 5.8. 

Calibration Switch 

On 

Off 

Off 

Table II: Simulation States 

HITL Switch 

X 

Off 

On 

Simulation 

Sensor Calibration 

Actuator Model 

HITL 

Cal_sw 

On 

Off1 

Calibration 

VD 
0,00 

VPIOO 

O.QQ 

v»aoo 
0,00 

Voltage    (v<3)        Degrees   Sensed 

W°-     14.00   »"*" """*■     14.00 

HITL sw 

On 

Off 

Speed Controller 
Speed_cnd (input) 

a i o.oo i ■ 
+ 

i ■ i ■ i ■ i ■ | • i ■ i ■ i ■-[ 

Speed   (output) 

14.00 

Variable Gain 

1,00 

+ 
pri'l'iT 

Figure 5.8: IA Screen for HITL Test 

The HITL design includes a variable gain block, which permits the user to adjust 

the gain during the testing. The gain margin can be found experimentally by running the 

HITL test and slowly increasing the gain until the system goes unstable. The results are 
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shown in Figure 5.9. The gain margin when determined experimentally is approximately 

24 (-28db) which matches the gain margin found from the root-locus and bode plots. 
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Figure 5.9: Gain Margin Results From HITL Test 
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VI.    ALTITUDE CONTROLLER DESIGN PROJECT 

This chapter details the design and implementation of a digital controller utilizing 

the rapid prototyping system. Applying classical control techniques, the goal is to design 

a PI controller to be implemented on the UAV FROG that will track constant altitude in 

steady-state. 

A. DESIGN REQUIREMENTS 

Design a PI controller for the combined model of the FROG and autopilot that 

satisfy the following requirements: 

• The feedback system must be stable. 

• The steady state tracking errors to constant altitude commands must be zero. 

• The overshoot to step commands in altitude should not exceed 20%. 

• The rise time in response to a step altitude command should be about 30 

seconds for a 100 ft climb. 

B. FROG AND AUTOPILOT MODELS 

The first step in the design process is to create a model of the aircraft. This 

model is developed from the equations of motion for the platform. A nonlinear model is 

first formed in a block diagram representation of these equations. The nonlinear model is 

then linearized about a desired trim point to create a linear model. There is also an 

autopilot installed in the FROG that must be modeled. The autopilot controls the elevator 

and aileron to command constant climb rate hc and constant yaw rate rc. The 

SystemBuild model for the combined FROG and autoplot was developed by a previous 

thesis student [Ref 7] and is shown in Figure 6.1, see Figure B.4 for the autopilot 

SuperBlock. 
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To determine the bandwidth available , the control bandwidth is first 

determined. Figure 6.2 shows the -3db cutoff frequency equal to 2 rads/sec. 
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Figure 6.1: FROG and Autopilot Models 
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C.  FEEDBACK CONTROLLER DESIGN 

The next step is to design a PI controller that satisfies the requirements outlined in 

section A. This is an iterative process employing various methods with the controller 

gains being the design knobs used to meet requirements of response time, overshoot, and 

command and control loop bandwidths. 

Applying classical control techniques, the initial controller gains are generally 

first obtained for continuous-time model. After a satisfactory response is achieved the 

system is transformed to discrete-time and tested again for satisfactory response. 

1.       Basic SystemBuild Model 

The basic model is constructed with a PI controller and the complete FROG, 

autopilot, and actuator model developed in the previous chapter, and all known delays 

and nonlinearities. The known delays include: a transmission delay of 200 milli-second 

between the ground station and the FROG, and an update rate of approximately one 

second for the Global Positioning System (GPS) position. To model the GPS a ZOH 

function is developed using a discrete gain block with magnitude one and a sampling rate 

of T= 1 (sec). The complete system is shown in Figure 6.3. 

Figure 6.3: Basic SystemBuild Model for Altitude Controller 

The following values of the PI controller gains were calculated to achieve the 

design requirements: 

65 



Figure 

£, = 0.01 
£,=0.16 

The basic system is simulated using Xmath, and the step response is 5 

6.4. 

shown in 

100 

00 

-•O 

20 

_»---r                                ~ ———_. 

20 

15 

0 

.              i 

\             * 

V           = 
\        • 

^-L_ 
»                                    20                                   40                                   eo                                   so                                  100 

Figure 6.4: Step Response for Initial Design 

A number of unsuccessful iterations were tried to reduce the overshoot of the step 

response while maintaining system stability.    The nonlinear system is linearized as 

described in the next section.       The linear model is then analyzed using root-locus 

methods and Bode frequency response. The analysis is demonstrated below. 

Consider the system transfer function 

\.y     m    _   iK/s+Kp).Pis) 
K         l + L(s)    ! + (% + *,)■/»(,) 

where 
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L(s)=C(s)-P(s) 

This results in an extra zero in the numerator at ~ yK , causing the overshoot. 

Therefore a second design was developed. The PI controller was modified, as shown in 

Figure 6.5. 

K 
■o 
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A- 

K„ 

P(s) 

Figure 6.5: Modified PI Controller 

Now the system transfer function is 

h_ 

k. 

K, P(s) 

1 + K, 
s       P 

P(s) 

L{s) 

This system was implemented using delta implementation [Ref. 8], as shown in Figure 

6.6. Note that SystemBuild does not have a differentiator block, therefore the following 

approximation is used: 

5-> 
es + \ 

where s «1 

This design showed a significant reduction in the amount of overshoot. The 

system response is shown in Figure 6.7. The initial value for Kt produced a slower then 

desired response and was increased to .2 rads/sec. With a satisfactory step response 

observed in position and climb-rate, another simulation was run to check aircraft 

response to altitude commands, Figure 6.8. 
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Figure 6.7: Step Response for PI Controller 
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Figure 6.8: Dynamic Response of Model 

69 



2.      Linearized Model: Further Analysis 

To determine the stability margins of the system the root-locus and Bode analyses 

were done. The loop between the controller and plant was broken, Figure 6.9, and the 

system was linearized. The interactive root-locus feature of Xmath was used to 

determine the location of the system poles and the gain margin. The final results are 

shown in Figure 6.10, with a gain margin of-16db. The Bode plot was then generated 

and the command bandwidth of 0.2 rads/sec and the phase margin of 70 degrees were 

obtained, Figure 6.11. 

The system was then discretized by transforming the SystemBuild block diagram. 

Note: delay blocks must be added to each integrator to avoid algebraic loop in RealSim. 

The differentiator approximation used here is: 

f TV V1 

s -> 
Tz 
z-\ 4-(i-^') 

The discrete model is shown in Figure 6.12. 

Figure 6.9: Broken Loop Block Diagram 
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Figure 6.10: Root-Locus Plot 
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Figure 6.12: Discrete Altitude Controller Model 

D. HARDWARE-IN-THE-LOOP TEST 

The next step is a hardware-in-the-loop test. The actuators on the AROD set up in 

the avionics lab are the same actuators that control the elevator for the FROG. Therefore 

the HITL test can be conducted as described in the HITL section of this thesis. The 

necessary conversion blocks for the PWM output signal and voltage input signal were 

added to the controller design. Since the elevator command from the autoploit and 

FROG model is in radians, two more blocks were added to convert degrees and radians. 

The HITL SystemBuild model for the HITL testing is shown in Figure 6.13 and the test 

results are shown in Figure 6.14. 

E. IMPLEMENTATION AM) FLIGHT TEST 

1.       Implementation 

The final step is to implement the controller into the flight management system 

for the FROG. This system manages a number of functions including navigation and 

flight control. The SuperBlock structure of the flight management system is separated 
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Figure 6.14: HITL Step Response For Altitude Controller 
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into five lower level SuperBlocks according to their function. The altitude controller is 

inserted into the control SuperBlock as shown in Figure 6.15. Appendix B contains the 

hierarchy for the SuperBlocks that make up the complete flight management system. 

The UAV can be controlled by either the computer or RC pilot with a standard 

RC Futaba transmitter. A complete description of the FROG and its components is given 

in [Ref. 9]. To prevent large control inputs during transitions from RC pilot to computer 

control, the altitude controller is implemented using a delta altitude as the input 

command. As an example, if the user desired to maintain level altitude at hand off, a 

command of zero should be given. A script block is used to freeze the GPS altitude 

position at hand-over. The delta commanded altitude is then summed with the frozen 

altitude position and is used as the entered altitude command for the controller. The 

controller outputs a climb-rate command to the autopilot. The feedback loop uses the 

GPS altitude position referenced with respect to the local tangent plane (LTP) at the field. 

The orientation of the frame is specified as North-East-Down (NED), therefore a 

conversion gain is added to the feedback loop to reverse the sign. A conversion gain is 

also added to the controller's output. The FROG autopilot model differs from the actual 

autopilot in the units used for the entered climb-rate command. The model uses (ft/sec) 

where the actual autopilot uses (ft/min). The two switches are part of the wind down 

loop. If either or both switches are in the "OFF" position, the integrator is forced back to 

its initial value. This is done to prevent initiation of the controller at a previous state. 

Once the controller is added to the flight management system, the user interface is 

added in the Interactive Animation screen used to monitor and control the FROG. The 

necessary input/output devices are added to the existing throttle control IA page, shown 

in Figure 6.16. For the initial flight testing, the screen is designed to display a number of 

performance variables not normally used for an operational flight display. These displays 

help evaluate whether the controller is working properly. The two digital output displays 

show the commanded altitude and the actual GPS altitude in feet. When the altitude 

controller is operating and working properly, the altitude readouts should match. An 

open loop input for the climb-rate is also added. With this feature the climb-rate 

command can be given directly to the autopilot by the user. The input slide gage is added 
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to adjust the gain during the test.  The trainer light in the middle of the page indicates 

who is controlling the vehicle, the computer or the pilot. 
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Figure 6.15: Altitude Controller SuperBlock 
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2.      Flight Test 

The flight test is conducted at a RC modelers club airfield located near the Naval 

Postgraduate School. The RPS is completely portable, and fits easily in a car for 

transport to the field. A flight plan is written a couple of days prior to the flight 

describing the conduct of the test flight. After all flight checks have been completed, a 

face-to-face pilot briefing is given to review the flight conduct and hand-off procedures. 

Normally the hand-off is accomplished during steady-state level fight. 

Eight test runs were performed during two test flights. The data acquisition editor 

feature of the RealSim software was used to record the data. For each test run, the 

Airspeed Controller was used to maintain constant airspeed. The first three runs tested 

the performance of the Altitude Hold Controller in a turn. From the ground station, it 

appeared the controller maintained altitude within a +50 ft band. The next three runs 

tested the controller's performance in response to climb commands. A 100 ft climb 

command was given from a straight and level altitude. Each time the controller 

responded well to the climb commands and leveled off appropriately. Once level, the 

FROG seemed to be chasing altitude. From observation, it was concluded the controller 

was chasing altitude due to GPS drift. Secondly, the aircraft was making rapid changes 

in pitch intermittently due to the latency in GPS data, as seen in Figure 6.17. To reduce 

the pitch activity a filter (s/s+3) was added to filter GPS altitude. Two more runs were 

conducted with the filtered GPS data. 

The test results for the controller in a turn are shown in Figure 6.17. The altitude 

error and commanded climb-rate from the controller show correct operation. As 

expected, the drift in the GPS caused the controller to chase altitude. The data shows 

many gaps of 3-5 seconds with no GPS update. Figure 6.18 details the results from the 

climb commands. As designed, the controller climbed to altitude and smoothly leveled 

off. The commanded climb-rate was well within the aerodynamic limits of the FROG 

and appropriate for the climb. The performance of the controller with the filtered GPS, 

shown in Figure 6.19, was unstable with the errors slowly growing. 

Overall, the Altitude Controller performed as designed. The commanded climb- 

rate in response to the altitude error is good. The shortfall is the GPS sensor. Current 

plans include upgrading the FROG's pitot-static system. With a reliable altimeter used as 
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feedback instead of GPS, a substantial improvement in controller performance would 

result. 
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VII.   CONCLUSIONS AND RECOMMENATIONS 

A. CONCLUSIONS 

The Advanced Controls of Aerospace Vehicles course, offered at the Naval 

Postgraduate School, provides an excellent opportunity for students to apply classical and 

modern control methods to the design of basic controllers. A strong foundation is 

presented on the operations and analysis of sampled-data systems. The rapid prototyping 

system, developed by the department, is an excellent design tool and allows the student 

valuable hands-on experience in the design, implementation and flight testing of control 

algorithms for unmanned air vehicles. The ability of the application software, RealSim, 

to automatically generate higher-language code and eliminate the time consuming task of 

programming the code for a working model, enables design projects ample time to be 

completed in the twelve weeks allotted for the course. 

Even though the RPS is still in its initial stages of development, it has generated a 

number of thesis opportunities, with many more foreseen in the future. Utilizing mostly 

off-the shelf technology, the cost of this educational tool will be minimal. 

B. RECOMMENDATIONS 

Considering the conclusions stated above and the knowledge gained in the course 

of instruction given in the Advanced Controls of Aerospace Vehicles, the following 

recommendations are forwarded: 

• Investigate scheduling this course, and its prerequisites, earlier in the avionics 

curriculum. The UAV program developed by the department produces many 

excellent opportunities for thesis work. To allow ample time for students to 

complete their thesis work, this class should be scheduled prior to the last 

quarter of instruction. 

• Presently there are no elective courses offered by the aeronautical engineering 

department in the area of digital control.  Investigate the establishment of an 
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elective course that would introduce to the student system identification 

methods and advanced multivariable and optimal control procedures. 

Devote more classroom time to Design of Digital Control Systems Using 

Transform Techniques presented in Chapter V of [Ref. 1], and Design of 

Digital Control Systems Using State-Space Methods presented in Chapter VI 

of [Ref. 1]. Less time should be given to Chapter II of [Ref. 1], Linear, 

Discrete, Dynamic-Systems Analysis: The z-Transform. Material covered in 

chapter 2, discrete Fourier transform (DFT), z-transform, and block diagram 

descriptions, should be introduced during the prerequisite course, EO 2402, 

Introduction to Linear Systems. 

Establish a library within the avionics lab containing all previous thesis work 

and material related to the UAV FROG. Many of the design projects and 

future thesis work will build on the work from past projects. Good 

documentation is required to keep track of modifications, input/output 

variables, and improvements made to the system. 

Purchase a second target computer to supplement America. Currently the 

computer lab has only one computer with the AC 100 model set-up and often 

two or three students end up waiting for access to America to compile and link 

their programs or to run the hardware setup. 
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APPENDIX A: HCE SCREENS FOR HITL PROJECT 

Hints 
Use left mouse button, tab, shift-tab, or return, to select items,! 
Use middle mouse button on toggle item3 for pull-rdown menu's; 
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Figure A.1: HCE Input Screen 
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Hints 
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Figure A.2: HCE Output Screen 
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APPENDIX B: ADDITIONAL SUPERBLOCK DIAGRAMS 

Figure B.1: Flight Test SuperBlock 
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